If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+x-4=0
a = 8; b = 1; c = -4;
Δ = b2-4ac
Δ = 12-4·8·(-4)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{129}}{2*8}=\frac{-1-\sqrt{129}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{129}}{2*8}=\frac{-1+\sqrt{129}}{16} $
| 9(u-87)=36 | | 9(u-87)=369(u−87)=36 | | 2(p-26)=54 | | 4x2-9-135=0 | | 3(k-64)=21 | | 3(k−64)=21 | | 8.7v-4.8=83.1 | | 12x+8=40-6 | | 10+3×23=x | | (1/3)y+10=(1/10)y | | 1/3y+10=1/10y | | 2x+4.6=0 | | 71/3*x=1.6/(6/11) | | 14-7d=14 | | 3^(x+1)-9^x=27 | | t/8+56=65 | | 4x–3=5x–3 | | 4.3^(x+1)-9^x=27 | | 2(y-4)=20+2y-12 | | 64^x+4^3x+1=80 | | 2p2+3=21 | | 4^(3x-4)=42 | | h. | | 4^3x-4=42 | | 0=-8x+7x^-2+160 | | 3G+4h=8 | | 14m-3/5m=59/5-18m/5 | | 14m-(3)/(5)m=(59)/(5)-(18m)/(5) | | 2n–10=–22 | | 4{5x+9}=-17+33 | | 5x+9=-17+33 | | (2x+5)÷(x+4)=1 |